Course Name: Unit Operation and Transport Phenomena I

單元操作與輸送現象(一)

Instructor: 華 繼 中 教授 (工二館 Rm 412 Ext. 33412)

Textbook: R. B. Bird, W. E. Stewart, and E. N. Lightfoot, 2007, "Transport

Phenomena", 2nd edition, John Wiley & Sons.

Reference: W. L. McCabe, J. C. Smith, and P. Harriott, 2007, "Unit

Operations of Chemical Engineering," 7th edition, McGraw-Hill

International Edition.

Year 2021/Spring

Course Outline:

- Vector and Tensor Manipulations (Appendix A)
- Concept of Fluid Viscosity and the Newton's Law (Chap. 1)
- Mechanisms of Momentum Transfer and Shell Balance (Chap. 2)
- Dynamic Conservation Equations for Isothermal Systems and Benchmark Problems (Chaps. 2,3,4)
- Stream-Function Formulation & Boundary Layer Theory (Chap.
 4)
- Turbulent Flows (Chap. 5)
- Interfacial Transport in Isothermal Systems (Chap. 6)
- Macroscopic Balances for Isothermal Flow Systems (Chap. 7)
- Introduction to Non-Newtonian Fluids (Chap. 8)

Grading: Three Exams (1st: 30% \cdot 2nd: 30% \cdot 3rd: 40 %)

Homework (+10 %)

Teaching assistants: 黃齡嬅 、許靖渝 (Rm 413, Ext. 33413)

楊旻融 (創新大樓 Rm 530, Ext. 33480)

Course Schedule of *Unit Operation & Transport Phenomena (I)*

(Spring/2020)

Chapter 0 Introduction and Basic Vector/Tensor Manipulations (1 week:

2/24~2/26)

- 1. Overview of transport phenomena: mass, momentum, and heat transfers
- 2. Continuum (physical) versus molecular (chemical) perspectives
- 3. The Gibbs notation & vector-tensor manipulations

Chapter 1 The Concepts of Fluid Viscosity (2 weeks: 3/3~3/12)

- Newton's law of viscosity
 - 1. Definition of viscosity through the Newton's law
 - 2. Molecular momentum transfer between adjacent layers
 - 3. Typical magnitudes of fluid viscosity for gases and liquids
- Temperature and pressure dependences of fluid viscosities
 - 1. Viscosity vs. momentum transfer
 - 2. Concepts of shear rate and shear stress
 - 3. Units of shear rate, shear stress, and viscosity
 - 4. Temperature and pressure dependences of fluid viscosity
- Stress tensor
 - 1. Notation and significance of tensors
 - 2. Essential considerations for constructing a stress tensor
 - 3. The generalized Newton's law for viscosity
- Kinetic theories
 - 1. Kinetic sources of molecular momentum transfer
 - 2. Use of corresponding-states correlation to find fluid viscosity
 - 3. The Lennard-Jones (6-12) potential as a fundamental description of van der Waals forces for simple fluids
 - 4. Formulas for estimating the fluid viscosity in various particulate systems

Chapter 2 Shell Balance of Momentum Transfer and Benchmark Problems (3

weeks: 3/17~4/9)

- Momentum shell balance & boundary conditions
 - 1. Steady-state laminar flows
 - 2. Typical boundary conditions
 - 3. Shell balance and solution scheme: postulation and posterior check
- Benchmark Problems:
 - a. Flow of falling film
 - 1. Gravity-driven flow

- 2. Free surface (stress)
- 3. Estimation of the film thickness
- 4. Stability criterion based on the Reynolds number
- b. Flow through a circular tube
 - 1. Shell balance in a cylindrical coordinate
 - 2. Pressure-driven vs. gravity-driven flows
 - 3. Paradox of the incompressibility assumption in pressure-driven flows
 - 4. Applications of the Hagen-Poiseuille equation
 - 5. Essential assumptions for arriving at the Hagen-Poiseuille equation
- c. Creeping flow around a sphere
 - 1. Coordinate transformation and surface integration
 - 2. The form drag and friction drag on a solid spherical particle
 - 3. The Stokes' law for creeping flow
 - 4. The concept of Brownian particles

(The First Examination: 4/16)

Chapter 3 Equations of Change and Benchmark Problems (3 weeks: 4/14~5/5)

- Equations of continuity, motion, and mechanical energy
 - Scalar deviations in Cartesian system and extension to general coordinate systems
 - 2. Vector/tensor representations and physical interpretations
 - 3. Equations of change for conservative/non-conservative quantities
 - 4. Momentum transfer by convection or diffusion (molecular kinetics/interactions)
- Representation in terms of various time derivatives
 - 1. The significance of substantial derivatives
 - 2. Common simplifications of the equation of motion
 - 3. The Bernoulli equation
- Couette Viscometry
 - 1. Utilization as a standard viscometer
 - 2. The centrifugal force and the shape of free surface
 - 3. Onset of secondary & turbulent flows
- Dimensional Analysis of the equations of change
 - 1. Selection of characteristic quantities
 - 2. Correlation relationships constructed using dimensionless parameters
 - 3. Essential considerations for scale-up application

- Time-dependent flows: the momentum diffusivity (Chap. 4)
 - 1. Momentum transfer by molecular motions
 - 2. Concept, expression, and application of momentum diffusivity
 - 3. Relationship with the notion of boundary layer (and its development)

Chapter 4 Stream-Function Formulation and Boundary-Layer Theory (2 weeks: 5/7~5/19)

- Creeping flows
 - 1. Construction and merits of the stream-function formulation of the EOM
 - 2. Physical significance in 2D steady-state flows
- Inviscid (Ideal) fluids and potential flows
 - 1. The assumptions and governing equations of irrotational (potential) flows
 - 2. Use of an analytical complex function for describing a potential flow
- Boundary layer theory
 - 1. Complementary to potential flow theory
 - 2. The Prandtl boundary layer equations
 - 3. Exact/Approximation solution schemes

(The Second Examination: 5/21)

Chapter 5 Turbulent Flows (1 week: 5/26~5/28)

- Comparison between laminar and turbulent flows
 - 1. Velocity profile & pressure drop in circular tubes
 - 2. 3D characteristics and additional energy dissipation by eddy motions
- Time-averaged equations of change
 - 1. Expressions of the turbulent momentum flux
 - 2. The Reynolds stresses
- Turbulent flow in ducts
 - 1. Four regions of turbulent flow near a wall
 - 2. Semi-empiricisms for estimating the wall shear stress and average velocity

Chapter 6 Interphase Momentum Transport (1.5 weeks: 6/2~6/9)

- Definition of Friction Factors
 - 1. Essential information incorporated
 - 2. Applications for complex flow/geometry problems
- Friction Factors in
 - a. Tube flow
 - 1. Analytical formula for laminar flow

- 2. Nearly constant *f* (a function of tube roughness only) for highly turbulent flows
- 3. The concept of hydraulic radius
- b. Creeping flow around a sphere
- 1. Analytical creeping-flow expression & constant f under highly turbulent condition
- c. Flow in Packed beds
- 1. The tube bundle model
- 2. Superficial velocity and void fraction
- 3. Essential considerations for constructing empiricisms in three different flow regimes

Chapter 7 Macroscopic Balances for Isothermal Flow Systems (1.5 weeks:

 $6/11 \sim 6/18$)

- The macroscopic mass, momentum, and mechanical energy balances
- 1. Basic assumptions of their derivations
- 2. Utilization in problem solving
- Estimation of frictional loss
- 1. Definition of friction loss factor
- 2. Friction loss factor for turbulent flow in straight pipe of uniform cross section
- 3. Utilization for various obstacles for piping flow
- Steady-state problems
- 1. Pressure rise in expansion flow & liquid-liquid ejection
- 2. Orifice manometer and the discharge coefficient
- Unsteady-state problems
- 1. Torricelli's equation in quasi-steady-state efflux flow
- 2. Critical damping in manometer

Chapter 8 Introduction to Non-Newtonian Fluids (Flows) (optional)

- Characteristics of non-Newtonian fluids
- 1. Laminar non-Newtonian flow profile in a circular tube
- 2. Shear thinning and development of normal stresses in steady-state shear flows
- 3. Fluid elasticity and memory effect (the Deborah number)
- The generalized Newtonian models
- 1. Power-law fluid in a circular tube
- 2. The Maxwell model and rheological constitutive equations
- Polymer kinetic theories
- 1. Anisotropic chain alignment and entropic forces

2. Bead-spring & dumbbell models

(The Third Examination: 6/23 or 6/25)