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Primary Objective

This course is a hands-on introduction to data-driven modeling for dynamical systems,
with all methods developed and tested in Python or MATLAB. Students learn how to:

(i) extract structure from data using matrix decompositions and modal methods,

(i) identify governing equations and reduced models,

(iii) interpret dynamics through operator and spectral perspectives

(iv) build learning-based surrogates for prediction and control.

Rather than presenting a catalog of techniques, we emphasize a small set of broadly
useful ideas—chosen for clarity and transferability—and show how they connect to
classical numerical analysis and applied optimization. Topics progress from foundational
algorithms to research-level tools, making the course suitable for advanced
undergraduates and early graduate students in engineering and physical sciences.

Grading method: Homework (40%), Midterm or Report (30%), Report (30%)
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1. Initial Value Problems: Euler, Runge—Kutta and
Initial and Boundary Adams Methods
Value Problems of 2. Error Analysis for Time-Stepping Routines 3-4

Differential Equations

3. Linear Operators and Computing Spectra
4. Neural Networks for Time Stepping

Matrix Decompositions

1. The Singular Value Decomposition (SVD)
2. Principal Components, Diagonalization and SVD 3-4
3. Dynamic Mode Decomposition (DMD)




Koopman Operator

1. Koopman Operator Theory 3
Theory

1. Modal Expansion Techniques for PDEs
Spatio-Temporal Data 2. The POD Method and Symmetries/Invariances 3.4
and Dynamics 3. Sparse Identification of Nonlinear Dynamics

(SINDy)
4. Deep Learning Paradigms for Time-Space Stepping

1. Data Assimilation Methods
Fancy Topisc 2. DeepONet 2-3
3. Transformers and Foundation Models

Students may select any paper or chapter from Kutz (2013), “Data-Driven Modeling &
Scientific Computation: Methods for Complex Systems & Big Data”, for an in-class
presentation.

Presenters will earn extra credit, but the chosen topic must be approved by the instructor
beforehand.



