

Instructor: Prof. Bor-cherng Hong (洪伯誠)

Office: Chemistry 514

Phone: x-66404

Office Hours: Monday, 2:00pm-3:00pm or by appt.

Lecture Text: (1) Lecture Handout

(2) 有機合成

方俊民等著

(3) Organic Synthesis, the Disconnection Approach

Stauart Warren

References: Asymmetric Synthesis G.-Q. Lin, et. al.

Organic Synthesis Work Book

J. A. Gewert, et. al.

Concepts of Organic Synthesis

B. P. Mundy

Organic Synthesis

M. B. Smith

Catalytic Asymmetric Synthesis

I. Ojima

And much more

Course Grading: Your grad will be determined from your performance in the three areas shown below:

Mid-term Examination 35%

On-line Examination 30%

Final Examination 35%

Total points 100%

Examination Schedule: Please note that all examinations will be held on Wednesday. Be advised that there will be no make-up exams.

Mid-term Examination Apr 23 Thursday

On-line Examination May 21 Thursday

Final Examination Jun 18 Thursday

IMPORTANT:

NOTE THAT NO MAKE-UP EXAMS WILL BE GIVEN!

The topics and their ordering as provided below are only approximate. This agenda reflects an optimism which could well be tempered. Accordingly, I reserve the right to shuffle and delete topics in response to time constraints.

Oxidation Reactions

Reduction reactions

Protecting groups

Functional groups transformation

Organo metallic Reactions.

Transsiton metal assisted in the C-C bond formation.

Cycloadditions

Rearrangement and Fragmentation.

Photoreaction and Radical reactions.

Design and Selectivity of Organic Synthesis

The Basis for Retrosynthetic Analysis

Transform-Based Strategies

Structure-Base and Topological Strategies

Stereochemical Strategies

Functional Group-Based and Other Strategies

Selected C-C Bond-Forming Reactions:

I. Transition metal assisted in the C-C bond formation:

Metathesis: Grubbs catalyst

Heck reaction:

Dötz reaction, Fischer carbene

Pauson-Khand reaction

II. Acid and Base Chemistry:

Aldol reaction: Felkin-Anh model, Zimmerman-Traxler transition states

Nucleophilic and Electrophilic reactions

Friedel-Crafts reactions

Prins reaction

Mannich reaction

Enolate reaction: addition of enolates to electrophiles, activated alkenes and alkynes,

Anionic Alkylation

Lewis-Acids Cyclization

Michael reaction: Robinson annulation

III. Cycloadditions:

Diels-Alder reaction

Dipolar cycloaddition: [3+2] cycloaddition, formal (hetero) [6+3],

Higher order cycloaddition: [6+4], [6+3], [6+2], [5+2], [5+3], [2+2+2]

IV. Active Intermediate Methods:

Photoreaction: [2+2] photoreaction, di- π methane rearrangement, Norrish type I, II reaction, arene-alkene photocycloaddition

Radical cyclization

Cationic rearrangement (cyclization): Wagner-Meerwein rearrangement,

Carbenoid Reaction:

V. Rearrangement.

Rearrangement: Pinacol rearrangement, Wolff rearrangement, Beckmann rearrangement, Favorskii rearrangement, Stevens rearrangement, Wittig rearrangement, Cope rearrangement: Claisen rearrangement. Ene reaction.

Fragmentation: Wharton fragmentation, Eschenmoser fragmentation, Maddox-kendall fragmentation, Beckman fragmentation.

Selected state-of-the-art reagents:

Martin's sulfurane reagent, Lawesson's reagent, Matteson reagent, McMurry-Hendrickson reagent, Nigishi reagent, Schwartz's reagent, Tebbe reagent, Trost's reagent, Eschenmoser reagent, Harpp reagent, etc.