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Primary Objective

In this course, we will cover some of the fundamental elements in deep learning and some
topics related to using Deep Learning to advance Scientific Computings. This course will
review some topics in numerical analysis, linear algebra, and differential equations, and move
forward to introduce the latest architecture in deep learning, for instance, the PINNs, Neural

ODE, Fourier Neural Operator, and ONet.
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Grading method: Homework (40%), Midterm or Report (30%), Report (30%)
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This course does not have a designated textbook; all teaching materials are papers or
chapters from basic mathematics textbooks.

If you really need a textbook to follow, you may find

Kutz, J. N. (2013). Data-driven modeling & scientific computation: methods for complex
systems & big data. OUP Oxford.

as your reference.
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networks, 4(2), 251-257.
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Part 2
1.  Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State
and Time-Dependent Problems Ch5.3-Ch5.9 Chh6

[Eif P s e 2. Dacorogna, B. (2024). Introduction to the Calculus of Variations. World Scientific.
Ch2-Ch3
Part 3

1. Cuomo, S., Di Cola, V. S., Giampaolo, F., Rozza, G., Raissi, M., & Piccialli, F. (2022).
Scientific machine learning through physics—informed neural networks: Where we are and
what’s next. Journal of Scientific Computing, 92(3), 88.

2. Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational physics, 378, 686-707.

3. Esteve-Yagiie, C., Tsai, R., & Massucco, A. (2025). Finite-difference least square methods
for solving Hamilton-Jacobi equations using neural networks. Journal of Computational
Physics, 524, 113721.

Part 4

1. Boyce, W. E., DiPrima, R. C., & Meade, D. B. (2021). Elementary differential equations
and boundary value problems. John Wiley & Sons. Ch9

2. Hairer, E., Hochbruck, M., Iserles, A., & Lubich, C. (2006). Geometric numerical
integration. Oberwolfach Reports, 3(1), 805-882. Chl Ch2

Part 5

1. Brunton, S. L., & Kutz, J. N. (2022). Data-driven science and engineering: Machine
learning, dynamical systems, and control. Cambridge University Press. Ch7

2. Chen, R. T., Rubanova, Y., Bettencourt, J., & Duvenaud, D. K. (2018). Neural ordinary
differential equations. Advances in neural information processing systems, 31.

Part 6

1. Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., &
Anandkumar, A. (2020). Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895.

2. Lu, L., Jin, P, & Karniadakis, G. E. (2019). Deeponet: Learning nonlinear operators for
identifying differential equations based on the universal approximation theorem of
operators. arXiv preprint arXiv:1910.03193.
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Foundation of Deep 1. Introduction to Neural Networks.
Learni 2. Universal approximation theorem
earning and i . 3-4
Ontimizati 3. Stochastic gradient descent
ptimization 4. Assignment 1
Review of Numerical 1. Solving ODEs by numerical methods and stability
lysis
Methods and Calculus analy . 3
o 2. Review the Calculus of Variations
of Variations :
3. Assignment 2
1. Introduction to PINNs
PINN 2. Integrate finite difference with PINNs and error 23
analysis
3. Assignment 3
Dynamic system 1. Intr(.)ductlon to dynamic systems 23
2. Assignment 4
Dynamic discovery 1. Introduction to SINDy algorithm 23
problems 2. Introduction to Neural ODE and error analysis
3. Assignment 5
1. Fourier Neural Operator
Deep operator learning 2. Deep_ONet ) 2-3
3. (Optional) Assignment 6

*:optional topics : Boundary integral equations, Monte-Carlo Methods (Multi-Level

Monte-Carlo method)

Students may select any paper or chapter from Kutz (2013), “Data-Driven Modeling &

Scientific Computation: Methods for Complex Systems & Big Data”, for an in-class

presentation.

Presenters will earn extra credit, but the chosen topic must be approved by the instructor

beforehand.




