中正大學課程大綱
課程名稱(中文): 大數據資料分析 開課單位: 國際經濟研究所(Graduate Institute of International Economics)
課程名稱(英文) Modern Big Data Analysis 課程代碼 5105867_01
授課教師: 簡廷軒 學分數 3
必/選修 選修 開課年級 1
先修科目或先備能力:
It is recommended that students have a basic knowledge of statistics and programming logic.
建議學生具備基本的統計學及程式邏輯知識。
課程概述:
Students will gain an understanding of what insights big data can provide through hands-on experience with the tools and systems used by big data scientists and engineers. This course guided through the basics of using Hadoop with MapReduce, Spark, Pig and Hive by following along with provided code, students will experience how one can perform predictive modeling and leverage graph analytics to model problems.
本課程將針對現今大數據資料分析之理論基礎及應用進行介紹,以及透過實際操作大數據分析所需使用的工具和系統,了解如何將分析結果與實務結合。本課程將提供範例程式碼並使用 Hadoop 與 MapReduce、Spark、Pig 和 Hive 等基礎工具,體驗如何執行建模和利用其分析大數據資料。
學習目標:
1. 獲得對大數據資料分析理論、實踐和流程的沉浸式理解。
2. 學習大數據分析的關鍵技能(數據清理、分析和可視化)和基礎工具。
3. 了解如何清理和組織數據進行分析,完成分析計算。
教科書:

課程大綱 分配時數 核心能力 備註
單元主題 內容綱要 講授 示範 隨堂作業 其他
Introduce to Big Data
An introduction to one of the most common frameworks, Hadoop, that has made big data analysis easier and more accessible -- increasing the potential for data to transform our world
6 2
Big Data Modeling and Management Systems
In this course, students will experience various data genres and management tools appropriate for each.
6 2
Big Data Integration and Processing
Retrieve data from example database and big data management systems.
Describe the connections between data management operations and the big data processing patterns needed to utilize them in large-scale analytical applications.
8 2
Machine Learning Based on Big Data
An overview of machine learning techniques to explore, analyze, and leverage data.
8 2
Graph Analytics for Big Data
Model a problem into a graph database and perform analytical tasks over the graph in a scalable manner, and apply these techniques to understand the significance of data sets for final projects.
6 2
Final Project- Case Study
Build a big data ecosystem using tools and methods form the earlier courses in this specialization.
4 3


請尊重智慧財產權,不得非法影印教師指定之教科書籍

教學要點概述:
1. 教材編選(可複選):自編簡報(ppt)教科書作者提供
2. 教學方法(可複選):講述板書講述
3. 評量工具(可複選):上課點名 10.00%, 隨堂測驗0%, 隨堂作業30.00%, 程式實作0%, 實習報告0%,
                       專案報告0%, 期中考30.00%, 期末考0%, 期末報告30.00%, 其他0%,
4. 教學資源:課程網站 教材電子檔供下載 實習網站
5. 教學相關配合事項:

課程目標與教育核心能力相關性        
請勾選: